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ABSTRACT

Motivation: In ordinary regression, imposition of a lasso penalty
makes continuous model selection straightforward. Lasso penalized
regression is particularly advantageous when the number of pre-
dictors far exceeds the number of observations.
Method: The present article evaluates the performance of lasso
penalized logistic regression in case–control disease gene mapping
with a large number of SNPs (single nucleotide polymorphisms)
predictors. The strength of the lasso penalty can be tuned to select
a predetermined number of the most relevant SNPs and other
predictors. For a given value of the tuning constant, the penalized
likelihood is quickly maximized by cyclic coordinate ascent. Once
the most potent marginal predictors are identified, their two-way and
higher order interactions can also be examined by lasso penalized
logistic regression.
Results: This strategy is tested on both simulated and real data. Our
findings on coeliac disease replicate the previous SNP results and
shed light on possible interactions among the SNPs.
Availability: The software discussed is available in Mendel 9.0 at the
UCLA Human Genetics web site.
Contact: klange@ucla.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The recent successes in association mapping of disease genes have
been propelled by logistic regression using cases and controls.
In most ways this represents a step down from the computational
complexities of linkage analysis performed on large pedigrees.
The most novel feature of these genome-wide association studies
is their sheer scale. Hundreds of thousands of SNPs (single
nucleotide polymorphisms) are now being typed on samples
involving thousands of individuals. This avalanche of data creates
new problems in data storage, manipulation and analysis. Size does
matter. For instance, with hundreds of thousands of predictors, the
standard methods of multivariate regression break down. These
methods involve matrix inversion or the solution of linear equations
for a very large number of predictors p. Since these operations
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scale as p3, it is hardly surprising that geneticists have opted for
univariate linear regression SNP by SNP. This simplification goes
against the grain of most statisticians, who are trained to consider
predictors in concert. In this article, we explore an intermediate
strategy that permits fast computation while preserving the spirit of
multivariate regression.

The lasso penalty is an effective device for continuous model
selection, especially in problems where the number of predictors
p far exceeds the number of observations n (Chen et al., 1998;
Claerbout and Muir, 1973; Santosa and Symes, 1986; Taylor
et al., 1979; Tibshirani, 1996). Several authors have explored lasso
penalized ordinary regression (Daubechies et al., 2004; Friedman
et al., 2007; Fu, 1998; Wu and Lange, 2008) in both the �1
and �2 settings. Let yi be the response for case i, xij the j-th
predictor for case i, βj the regression coefficient corresponding to
the j-th predictor and µ the intercept. For notational convenience
also let θ = (µ,β1,...,βp)t and xi = (xi1,...,xip)t . In ordinary linear

regression, the objective function is f (θ )=∑n
i=1(yi −µ−xt

iβ)2.
In �1 regression one replaces squares by absolute values. Lasso
penalized regression is implemented by minimizing the modified
objective function

g(θ ) = f (θ )+λ

p∑
j=1

|βj|. (1)

Note that the intercept µ is ignored in the lasso penalty λ
∑p

j=1 |βj|.
The tuning constant λ controls the strength of the penalty, which
shrinks each βj toward the origin and enforces sparse solutions.

A ridge penalty λ
∑p

j=1β2
j also shrinks parameter estimates, but it

is not as effective in actually forcing many estimates to vanish. This
defect of the ridge penalty reflects the fact the |b| is much larger
than b2 for small b.

Many diseases are believed to stem from the interaction of
risk factors. This further complication can also be handled by
lasso penalization if we proceed in two stages. In the first stage,
we select the important marginal predictors; in the second stage,
we look for interactions among the supported predictors. In both
stages, we adjust the penalty constant to give a fixed number
of supported predictors. In most genetic studies, researchers have
a general idea of how many true predictors to expect. Our
software encourages experimentation and asks the user to decide
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on the right balance between model completeness and quick
computation.

This article, like most papers, has its antecedents. In particular, Shi
et al. (2006, 2007, 2008); Uh et al. (2007) and Park and Hastie (2008)
make substantial progress in adapting the lasso to logistic regression
and to the discovery of interactions. Malo et al. (2008) apply ridge
regression to distinguish causative from non-causative SNPs in a
small region. Schwender and Ickstadt (2008) and Kooperberg and
Ruczinski (2005) identify interactions using logic regression. These
and other relevant papers are reviewed by Liang and Kelemen
(2008). We focus on a coordinate descent algorithm because it
appears to be the fastest available. Competing algorithms for
lasso penalized logistic regression include non-negative quadratic
programming (Sha et al., 2007), quadratic approximations (Lee
et al., 2006) and interior point methods (Koh et al., 2007). Friedman
et al. (2008) compared coordinate descent with several competing
algorithms and concluded that it performs the best.

The specific contributions made in this article include (i) the
consistent use of the lasso penalty for both marginal and interaction
predictors, (ii) selection of the tuning constant to give a fixed
number of predictors, (iii) application of cyclic coordinate ascent
in maximizing the lasso penalized loglikelihood, (iv) rigorous
pre-selection of a working set of predictors and (v) application of
false discovery rates for global significance. Our overall strategy
combines fast computing with good recovery of the dominant
predictors.

In the remainder of the article, Section 2 fleshes out our statistical
approach to data. In particular, it covers the lasso penalized logistic
model, selection of the tuning constant, cyclic coordinate ascent
and assessment of significance for both marginal and interaction
predictors. The procedures are summarized as follows:

(1) prescreening by a score criterion (Section 2.6);

(2) selection of the tuning parameters λ for a fixed number
of predictors by bracketing and golden section search
(Section 2.2);

(3) parameter estimation via cyclic coordinate descent
(Section 2.5);

(4) significance assessment based on leave-one-out (LOO)
indices (Section 2.3) and false discovery rate (FDR)
(Section 2.7);

(5) lasso identification and quantification of interactions among
previously selected features (Section 2.4).

Section 3 evaluates the method on simulated data. Section 4
applies the method to real data on coeliac disease. Finally, Section 5
summarizes the advantages and limitations of lasso penalized
logistic regression in association testing, puts our specific findings
into the larger context of current research and mentions the
availability of relevant software.

2 METHODS

2.1 Lasso penalized logistic regression
In case–control studies, the dichotomous response variable yi is typically
coded as 1 for cases and 0 for controls. By analogy to ordinary
linear regression, in linear logistic regression we write the probability

pi =Pr(yi =1) of case i given the predictor vector xi as

pi = eµ+xt
i β

1+eµ+xt
i β

. (2)

The parameter vector θ = (µ,β1,...,βp)t is usually estimated by maximizing
the loglikelihood

L(θ ) =
n∑

i=1

[
yi logpi +(1−yi)log(1−pi)

]
. (3)

To encourage sparse solutions, we subtract a lasso penalty from the
loglikelihood as just suggested. For the purposes of this article, we consider
only additive models where the range of the predictors xij is restricted to the
three values −1, 0 and 1, corresponding to the three SNPs genotypes 1/1, 1/2
and 2/2, respectively. A dominant model can be achieved by collapsing the
genotypes 1/1 and 1/2, and a recessive model can be achieved by collapsing
genotypes 1/2 and 2/2. In both models the assigned quantitative values
are −1 and 1. In our experience, the set of markers entering the model
is relatively insensitive to the genetic model assumptions. We recommend
standardizing all non-SNP quantitative predictors to have mean 0 and
variance 1.

2.2 Selection of the tuning constant λ

For a given value of the tuning constant λ, maximizing the penalized
loglikelihood singles out a certain number of predictors with non-zero
regression coefficients. Let r(λ) denote the number of predictors selected.
If we reduce λ and relax the penalty, then more predictors can enter the model.
Although minor exceptions occasionally occur, r(λ) is basically a decreasing
function of λ with jumps of size 1. Hence, once a predictor enters the model,
it usually remains in the model as λ decreases. Although a predictor’s order
of entry tends to be correlated with its marginal significance, violations of
this rule of thumb occur with correlated predictors. For every integer s≤p,
we assume that there is an interval Is on which r(λ)=s. One can quickly find
a point in Is by a combination of bracketing and bisection. In bracketing, we
start with a guess λ. If r(λ)=s, we are done. If r(λ)<s and a∈ (0,1), then
there is a positive integer j such that r(ajλ)≥s. If r(λ)>s and b>1, then
there is a positive integer k such that r(bkλ)≤s. In practice, we set a=1/2
and b=2 and take the smallest integer j or k yielding the second bracketing
point. Once we have a bracketing interval [λl,λu], we employ bisection. This
involves testing the midpoint λm =1/2(λl +λu). There are three possibilities:
if r(λm)=s, we are done; if r(λm)<s, we replace λu by λm; and if r(λm)>s,
we replace λl by λm. In either of the latter two cases, we bisect again and
continue. As soon as we hit a point in Is, we halt the process.

The primary danger in bracketing is visiting a λ with r(λ) very large.
To limit the damage from a poor choice of λ, we abort optimization of the
objective function whenever the search process encounters too many non-
zero predictors. Since predictors can enter and leave the model repeatedly
prior to convergence, this check is delayed for several iterations, say 10.
As a further safeguard, we set the maximum number of non-zero predictors
allowed well above the desired number of predictors s. In practice we use
s+10.

In simpler settings, cross-validation is used to find the best value of λ.
Recall that in k-fold cross-validation, one divides the data into k equal
batches (subsamples) and estimates parameters k times, leaving one batch
out per time. The testing error for each omitted batch is computed using
the estimates derived from the remaining batches, and the cross-validation
curve c(λ) is computed by averaging testing error across the k batches.
The curve c(λ) can be quite ragged, and many values of λ must be tried
to find its minimum. To avoid this time-consuming process, we let the
desired number of predictors drive statistical analysis. In actual gene mapping
studies, geneticists would be thrilled to map even 5 or 10 genes. In our coeliac
disease example, it is necessary to consider a larger number of predictors to
uncover the full biological truth.

715



T.T.Wu et al.

2.3 Assessing significance
When SNPs are tested one by one, it is easy to assign a P-value to a SNP
by conducting a likelihood ratio test. If we ignore non-genetic predictors
such as age, sex and diet, then the only relevant parameters are the intercept
µ and the slope β of the SNP. The null hypothesis β =0 can be tested by
maximizing the loglikelihood under the null and alternative hypotheses and
forming twice the difference in maximum loglikelihoods. This statistic is
asymptotically distributed as a χ2-distribution with 1 degree of freedom.
Collectively, the P-values must be corrected for multiple testing, either by
a Bonferroni correction or some version of a FDR correction. The latter
choice is more appropriate when we anticipate a fairly large number of true
positives. We will say more about FDR corrections later. A more compelling
concern is that proceeding SNP by SNP omits the impact of other SNPs.
Most statisticians prefer to assess significance in the context of multiple
linear regression rather than simple linear regression. They resist this natural
impulse in association studies because of the computational barriers and the
mismatch between numbers of observations and predictors.

In our multivariate setting, we compare the standard SNP by SNP P-values
with alternative P-values generated by considering the s selected predictors
as a whole. Once we have selected the s model predictors, we discard the non-
selected predictors and re-estimate parameters for the selected predictors with
λ=0. Since s is small, say 10 to 20 in our numerical studies, re-estimation
is now a fully determined problem. We then undertake s further rounds of
estimation, omitting each of the selected predictors in turn. These actions
put us into position to conduct likelihood ratio tests by leaving one predictor
out at a time. It is tempting to assign P-values by comparing the resulting
likelihood ratio statistics to the percentile points of a χ2-distribution with 1
degree of freedom. This is invalid because it neglects the complex selection
procedure for defining the reduced model in the first place. Nonetheless, these
LOO P-values are helpful in assessing the correlations between the retained
predictors in the reduced model. To avoid confusion, we will refer to the LOO
P-values as LOO indices. The contrast between the univariate P-values and
the LOO indices is instructive. Although both of these measures are defective
and should not be taken too seriously, they are defective in different ways
and together give a better idea of the truth.

2.4 Interaction effects
As mentioned previously, we advocate testing for interactions after
identifying main effects. This strategy is prompted by the sobering number of
interactions possible. With p predictors, there are

(p
k

)
k-way interactions, and

2p interactions in all. With hundreds of thousands of SNPs, it is impossible
even to examine all two-way interactions. These problems disappear once
we focus on a handful of interesting marginal predictors. However, our
commitment to a two-stage strategy brings in its wake certain technical
problems.

First, there is the combinatorial question of how to generate all subsets
of {1,...,r} up to a given size. Fortunately, good algorithms for this task
already exist. Minor changes to the NEXKSB code in Nijenhuis and Wilf
(1978) permit one to generate one subset after another, with smaller subsets
coming before larger subsets. Thus, when the number of predictors r retained
from stage one is too large to generate all subsets, one can easily visit all
lower order interactions and bypass higher order interactions. Second, there
is the problem of storing the interaction predictors. We finesse this problem
by computing interaction products on the fly. Third, there is the question
of how to integrate SNP predictors with other predictors such as sex, age
and environmental exposures. Since this is largely a programming problem,
we omit further discussion of it. Fourth, our interactions do not involve any
self-interactions. Inclusion of self-interactions would force us to pass from
subsets to multisets. For SNPs the potential gain seems worth less than the
bother. Other predictors such as age have a richer range of values, so it may
be useful to add predictors such as age squared, age cubed and so forth
to the original list of predictors. Finally, there are the problems of model
selection and hypothesis testing for the interaction effects. Here, again it
seems reasonable to rely on lasso penalized estimation and LOO indices.

2.5 Cyclic coordinate ascent algorithm
In linear logistic regression, maximum likelihood estimates are usually found
by the scoring algorithm. This requires the score and observed information

∇L(θ ) =
n∑

i=1

[yi −pi(θ )]xi (4)

−d2L(θ ) =
n∑

i=1

pi(θ )[1−pi(θ )]xix
t
i .

of the loglikelihood (3). Because scoring coincides with Newton’s method,
it is fast and reliable, and most statisticians would agree that it is the method
of choice for low-dimensional problems. Its Achilles heel is the need to
invert the observed information at each iteration. If we add to this drawback
the complication of dealing with the non-differentiable lasso penalty, then it
becomes abundantly clear that competing algorithms should be considered
in association analysis.

The oldest and simplest alternative, coordinate ascent, updates one
parameter one at a time. Coordinate ascent comes in two flavors, cyclic and
greedy (Wu and Lange, 2008). In cyclic coordinate ascent, each parameter
is updated in turn; in greedy coordinate ascent, the parameter leading to
the greatest increase in the objective function is updated. Although greedy
coordinate ascent makes faster initial progress in logistic regression, it suffers
from excess overhead. For this reason we will confine our attention to cyclic
coordinate ascent.

Although the logistic loglikelihood (3) is non-linear, it has the com-
pensating property of concavity. Concavity fortunately carries over to the
lasso penalized loglikelihood

g(θ ) = L(θ )−λ

p∑
j=1

|βj|,

because the sum of two concave functions is concave. The objective function
g(θ ) is non-differentiable, but it does possess a directional derivative along
each forward or backward coordinate direction. For instance, if uj is the
coordinate direction along which βj varies, then

duj g(θ )= lim
t↓0

g(θ +tuj)−g(θ )

t
=duj L(θ )+

{ −λ βj ≥0
λ βj <0,

and for vj =−uj

dvj g(θ )= lim
t↓0

g(θ −tvj)−g(θ )

t
=dvj g(θ )+

{
λ βj >0
−λ βj ≤0.

When a function such as L(θ ) is differentiable, its directional derivative along
uj coincides with its ordinary partial derivative, and its directional derivative
along v=−uj coincides with the negative of its ordinary partial derivative.

To update a single parameter of the objective function g(θ ), we use
one-dimensional scoring. This works well for the intercept parameter µ

because there is no lasso penalty. For a slope parameter βj , the lasso penalty
intervenes, and particular care must be exercised near the origin. In fact, it
simplifies matters to start scoring at the origin. Here, we test the directional
derivatives duj g(θ ) and dvj g(θ ). If both are non-positive, then g(θ ) cannot
be increased by moving away from the origin. This claim follows from the
concavity of g(θ ). If one of the directional derivatives duj g(θ ) and dvj g(θ )
is positive and the other is non-positive, then progress can be made along
the corresponding arm of g(θ ), and scoring is commenced until convergence
is achieved along that arm. Concavity rules out the possibility that both
directional derivatives are positive. A simple sketch of a concave function
will convince the reader of this assertion.

In practice, we start all parameters at the origin. In overdetermined
problems, the vast majority of slopes βj are permanently parked there. Only
those with considerable evidence in their favor can overcome the pressure of
the lasso pushing them toward the origin. Even those that escape this pressure
can be forced back to the origin as other more potent predictors enter the
model. It is clearly computationally beneficial to organize parameter updates
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by tracking the linear predictor µ+xt
i β of each case. These start at 0, and

when a single component of θ is updated, it is trivial to update the linear
predictors.

2.6 The score criterion and efficient computations
In Section 2.2, we demonstrated that the lasso penalty can be tuned to select
a predetermined number of the most relevant SNPs. Once the value of the
tuning constant λ is fixed, the penalized likelihood is quickly maximized
by cyclic coordinate ascent to give us the desired number of non-zero
coefficients. However, since we face a very large number of SNP predictors,
it would be much more efficient if we could start our search procedure by
focusing on a substantially smaller set of features that are more likely to be
associated with the response. We accomplish this by a ‘swindle’ that screens
the predictors according to a simple score criterion.

The score equations of the loglikelihood (4) for linear logistic regression
define part of the Karush–Kuhn–Tucker (KKT) conditions (Lange, 2004)∣∣∣∣∣

n∑
i=1

[yi −pi(λ)]xij

∣∣∣∣∣ = λ if βj �=0 (5)

∣∣∣∣∣
n∑

i=1

[yi −pi(λ)]xij

∣∣∣∣∣ ≤ λ if βj =0. (6)

for optimality in the penalized model. Here pi(λ) is the fitted probability for
observation i, fit using the indicated value of λ. For very large λ, all the βj

are estimated as zero, and the only non-trivial parameter is the intercept µ,
which is unpenalized. If p0 is the overall proportion of cases in the data, then
the intercept is estimated as µ̂= log[p0/(1−p0)] for large λ.

We accordingly define the following initial absolute score:

aj =
∣∣∣∣∣

n∑
i=1

(yi −p0)xij

∣∣∣∣∣ (7)

for each predictor. Note that aj determines the standard score statistic for
testing the null model βj =0 with µ fixed at µ̂. The first predictor to enter
the lasso penalized model as λ decreases is the predictor with the largest
value of aj .

These considerations suggest a screening device for models with large
numbers of SNPs. Because we insist on tuning the lasso penalty to select just
a handful of predictors, the final absolute scores are apt to correlate strongly
with the precomputed absolute scores. Thus, if we desire s predictors, we take
k to be a reasonably large multiple of s, say k =10s, sort the aj , and extract
the k predictors with the largest values of aj . Call this subset Sk . We now
subject Sk to our estimation procedure and choose a value λk to give us
exactly k predictors. The selected predictors satisfy the KKT conditions (5)
and (6). If the predictors omitted from Sk also satisfy the KKT condition
(6), then we have found the global minimum for the given value λk and
stop. If one of the omitted predictors fails the KKT condition (6), we replace
k by 2k, say, and repeat the process. Eventually, the KKT conditions are
satisfied by all predictors. Since the KKT conditions are sufficient as well as
necessary for a global maximum, this process legalizes the swindle. Often
the value 10s works. When it does not, usually just a few doublings suffice.
For example, if the desired number of predictors is s=10, in stage one we
fit a model with 100 predictors. When stage two is needed, we fit a model
with 200 predictors, and so forth. If there are hundred of thousands of SNPs,
our swindle saves an enormous amount of computing with no loss in rigor.

Of course, the swindle sets Sk may contain highly correlated features with
redundant information. This turns out to be the case with the HLASNPs in our
coeliac example. Fortunately, most of the redundant features are discarded
by the lasso penalty. Our numerical results, for instance those displayed in
Table 1, confirm that the swindle dramatically speeds up computation while
preserving model selection results.

2.7 Computation of FDR
The score swindle also has implications for the assessment of the FDR
for the univariate P-values. We will not pursue these delicate connections

here because in practice most geneticists demand that all univariate tests be
done. Fortunately, it takes just a few minutes of computing time to carry
out the univariate logistic regressions encountered in a modern association
study. Even substituting likelihood ratio tests for score tests does not change
this fact.

In the Simes procedure highlighted by Benjamini and Hochberg (1995)
in their analysis of FDR, there are n null hypotheses H1,...,Hn and n
corresponding P-values P1,...,Pn. The latter are replaced by their order
statistics P(1),...,P(n). If for a given α≥0, we choose the largest integer j such
that P(i) ≤ (i/n)α for all i≤ j, then we can reject the hypotheses H(1), ...,H(j)

at an FDR of α or better. This procedure is justified in theory when the tests are
independent or positively correlated. In the presence of linkage equilibrium,
association tests are independent; in the presence of linkage disequilibrium,
they are positively correlated. For a more detailed discussion of the multiple
testing issues in SNP studies, see Nyholt (2004).

3 ANALYSIS OF SIMULATED DATA
To evaluate the performance of lasso penalized regression in
association testing, we focus on underdetermined problems where
the number of predictors p far exceeds the number of observations
n. Our simulation model

log
( pi

1−pi

)
= µ+

p∑
j=1

xijβj +
p∑

k=1

p∑
l=1

xikxilηkl, (8)

involves both marginal effects and two-way interactions. For ease of
simulation, we assume that each predictor vector xi is derived from
a realization of a multivariate normal vector Yi whose marginals are
standard normal and whose covariances are

Cov(Yij,Yik) =



1 j=k
ρ j,k ≤10, j �=k
0 otherwise.

Thus, only the first 10 predictors are correlated. To mimic a SNP with
equal allele frequencies, we set xij equal to −1, 0 or 1 according to
whether Yij <−c, −c≤Yij ≤c, or Yij >c. The cutoff −c is the first
quartile of a standard normal distribution. In every simulation, we
set µ=1, βj =1 for 1≤ j≤5, and βj =0 for j>5. We also set ηkl =0
except for the special cases η12 =η34 =0.5. These substantial effect
sizes allow us to discern signal from noise in fairly small samples.

To ameliorate the shrinkage of the non-zero estimates for a
particular λ, we always re-estimate the selected parameters in the
final model, omitting the non-selected parameters and the lasso
penalty. This yields better parameter estimates for testing purposes.
We compute LOO indices as mentioned earlier and contrast them to
univariate P-values based on estimating the impact of each predictor
without reference to the other predictors.

We analyzed the simulated data in two stages. In stage one, we
considered only main effects and selected s1 predictors. In stage two,
we discarded the non-selected predictors and sought s2 marginal
effects or interactions among the selected predictors. The sensible
choice s2 ≥s1 permits all predictors singled out in stage one to
remain in contention as marginal effects in stage two. Because
virtually all association studies yield only a handful of predictors
that can be replicated, we took s1 and s2 small and considered the
specific pairs (s1,s2)= (10,10),(10,20),(20,10),(20,20). Table 1
summarizes our results over 50 random replicates for various choices
of the number of predictors p, the number of subjects n and the
correlation coefficient ρ. Table 1 reports the average values of the
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Table 1. Simulation results based on 50 random samples

(p,n) ρ (s1,s2) λ1 Ktrue,1 λ2 Ktrue,2 Time no Time
swindle swindle

(5000,500) 0.0 (10,10) 29.43 (1.50) 5.00 (0.00) 29.64 (1.90) 5.84 (0.67) 1.36 (0.34) 0.68 (0.11)
(5000,500) 0.0 (10,20) 29.43 (1.50) 5.00 (0.00) 10.86 (1.71) 6.98 (0.14) 2.18 (0.39) 1.57 (0.26)
(5000,500) 0.0 (20,10) 25.46 (1.06) 5.00 (0.00) 30.06 (1.65) 5.84 (0.67) 2.67 (0.40) 1.10 (0.17)
(5000,500) 0.0 (20,20) 25.46 (1.06) 5.00 (0.00) 25.49 (1.25) 6.24 (0.65) 2.75 (0.36) 2.17 (0.39)

(5000,500) 0.8 (10,10) 19.51 (1.94) 5.00 (0.00) 17.62 (3.24) 5.04 (0.20) 3.06 (0.52) 1.76 (0.46)
(5000,500) 0.8 (10,20) 19.51 (1.94) 5.00 (0.00) 6.16 (1.12) 6.58 (0.57) 5.91 (5.74) 4.61 (5.63)
(5000,500) 0.8 (20,10) 16.40 (1.50) 5.00 (0.00) 19.79 (2.01) 5.04 (0.20) 6.40 (2.94) 3.08 (0.94)
(5000,500) 0.8 (20,20) 16.40 (1.50) 5.00 (0.00) 16.28 (1.65) 5.12 (0.38) 6.50 (4.32) 5.14 (3.33)

(50 000, 2000) 0.0 (10,20) 67.39 (2.21) 5.00 (0.00) 21.83 (3.18) 7.00 (0.00) 39.17 (11.45) 10.09 (10.81)
(50 000, 2000) 0.8 (10,20) 45.99 (2.12) 5.00 (0.00) 15.09 (2.39) 7.00 (0.00) 102.31 (33.92) 14.59 (10.37)

(100 000, 2000) 0.0 (10,20) 69.77 (2.13) 5.00 (0.00) 23.62 (3.24) 7.00 (0.00) 110.24 (22.59) 8.94 (11.27)
(100 000, 2000) 0.8 (10,20) 47.71 (2.30) 5.00 (0.00) 14.66 (2.54) 7.00 (0.00) 197.20 (53.17) 10.81 (1.69)
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Fig. 1. Plots of the stage one penalty constant λ1 versus the number of
selected predictors, the number of true predictors and FDR. The stage two
penalty constant λ2 =25.

tuning constants λ1 and λ2, the average number of true predictors
Ktrue,1 and Ktrue,2 found and the average computing times in
seconds. The subscripts 1 and 2 refer to the first and second stages.
The standard error of each average appears in parentheses.

The last two columns of Table 1 summarize computing times
with and without our computational swindle. Forgoing the swindle
inflates all times in Table 1. For p=5000 the differences are not too
noticeable, but for p=100000 it takes 10 to 20 times longer to reach
the lasso solution without the swindle.

The results Table 1 for the choice (s1,s2)= (10,20) appear
best. In general, we recommend using a substantially larger s2
than s1. Performance degrades as we pass from uncorrelated
to highly correlated predictors. More iterations are needed for
convergence, and the fraction of true predictors captured falls. With
a large enough sample size, performance is perfect. Table 1 in
our submitted Supplementary Materials displays our results for a
single representative sample with p=50 000, n=2000, ρ =0 and
(s1,s2)= (10,20). At stage one, all five true predictors are correctly
selected with impressive univariate P-values and LOO indices. At
stage two, all five main effects and both interaction effects are
selected. In both instances, the univariate P-values and LOO indices
of the true predictors are much smaller than the corresponding values
for the false predictors.

It is also instructive to consider what happens in the simulated data
with p=5000, n=500 and ρ =0 when the stage one tuning constant
λ1 varies. Figure 1 plots six things as a function of λ1: (i) the number
of predictors selected at stage one, (ii) the number of predictors
selected at stage two, (iii) the number of true predictors selected at
stage one, (iv) the number of true predictors selected at stage two,
(v) the FDR at stage one and (vi) the FDR at stage two. In stage
two, we set the tuning constant λ2 =25. In counting true predictors,
we consider only marginal predictors at stage one and marginal
plus interaction predictors at stage two. When we know the true
predictors, estimating FDR is trivial, and the Simes procedure can
be ignored. Inspection of the six plots shows that all true predictors
are recovered for a fairly broad range of λ1 values. As λ1 decreases,
more predictors enter the model, and FDR increases.

4 ANALYSIS OF COELIAC DATA

4.1 Data description
In the British coeliac data of van Heel et al. (2007), p=310,637
SNPs are typed on n=2200 subjects (938 males and 1262 females).
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Controls outnumber cases 1422 to 778. Across the sample, an
impressive 99.875% of all genotypes are assigned; no individual
has more than 10% missing data. We impute missing genotypes at
a SNP by the method sketched in Ayers and Lange (2008). Only 32
SNPs show a minor allele frequency below 1%; these are dropped
from further analysis.

4.2 Simulation study based on coeliac data
We also tested our method by conducting a simulation study based
on the coeliac data. Here in model (8), we took µ=−3, βj =1
for gender, rs3737728 (SNP2), rs9651273 (SNP4) and rs4970362
(SNP9), and βj =0 for the remaining SNPs. We also set ηkl =2 for
the interaction of gender and rs3934834 (SNP1) and the interaction
of SNP4 and SNP9; all other ηkl we set to 0. Notice that SNP1 has no
marginal effect even though it interacts with gender in determining
the response. The lower right-hand block of the correlation matrix

gender SNP1 SNP2 SNP4 SNP9


1.0000 0.0106 −0.0178 −0.0307 0.0009
0.0106 1.0000 −0.2249 0.0991 −0.0207

−0.0178 −0.2249 1.0000 0.5289 0.3892
−0.0307 0.0991 0.5289 1.0000 0.2894

0.0009 −0.0207 0.3892 0.2894 1.0000




indicates fairly strong linkage disequilibrium among the three
marginally important SNPs. Table 2 summarizes Fisher’s exact test
for Hardy–Weinberg equilibrium on the four SNPs (Lazzeroni and
Lange, 1998). A total of 10 000 random tables were sampled to
approximate P-values at each SNP.

Following our previous plan of analysis, we varied the numbers
of predictors (s1,s2) in the model. The best results summarized in
Table 3 reflect the sensible choice (s1,s2)= (10,20). At stage one,
all four true predictors are correctly selected. In stage two all four
main effects are selected, and both interaction effects are selected
for the vast majority of the 50 random replicates.

Our success with the additive model was partially replicated when
we simulated under dominant and recessive models. In the dominant
model, we score a SNP predictor as 1 if the number of minor alleles is
1 or 2; otherwise we score it as −1. In the recessive model, we score
a SNP predictor as 1 if the number of minor alleles is 2; otherwise
we score it as −1. The last two rows of Table 3 report our analysis
results for the dominant and recessive models. The results under
the dominant model are nearly as good as those under the additive
model. Since the numbers of predictor values equal to 1 and −1 are
better balanced under the dominant model, it is hardly surprising
that the recessive model does worse.

Table 2. Fisher’s exact test for Hardy–Weinberg equilibrium on the 2200
coeliac cases and controls

Locus Est. Expected Observed
name P-value Range homozygotes homozygotes

s3934834 1.0000
s3737728 0.7101 ± 0.0090743 1303.39 1296
s9651273 0.6445 ± 0.0095733 1304.25 1294
s4970362 0.7412 ± 0.0087595 1189.35 1197

4.3 Results of real data analysis
Replicating earlier results with antigenic markers, van Heel et al.
(2007) find overwhelming evidence for association in the human
leukocyte antigen (HLA) region of chromosome 6. SNP rs2187668
in the first intron of HLA-DQA1 has the strongest association,
followed by SNPs rs9357152 and rs9275141 within or adjacent to
HLA-DQB1. van Heel et al. also identify a more weakly associated
region on chromosome 4 centered on SNPs rs13119723 and
rs6822844 in the KIAA1109-TENR-IL2-IL21 linkage disequilibrium
block. Their results are reproduced in our supplementary Table 2.
The P-values listed in the table are univariate P-values taking one
SNP at a time.

We now examine several models with different numbers of
desired predictors. Since the grand mean µ always enters the
model first, we omit it from further discussion. In model 0 with
one predictor mandated, SNP rs2187668 on chromosome 6 HLA
region is selected. This SNP has the smallest univariate P-value
(9.48×10−191) among all the 310 605 SNPs tested. In model 1 with
five predictors mandated, we identify four HLA SNPs in addition
to rs2187668. In model 2 with 10 predictors mandated, once again
we recover only HLA SNPs from chromosome 6; these results are
summarized in Table 3 of our submitted Supplementary Materials.
Univariate P-values appear in column 4 and LOO indices in column
5 of the table. It is striking how different the univariate P-values and
LOO indices are for these SNPs. This phenomenon is just another
manifestation of the high linkage disequilibrium among the SNPs.
The estimated FDRs for the selected SNPs are all much smaller
than 0.01. In model 3 with 50 predictors mandated, we finally see
predictors outside the HLA region. Table 4 records the non-HLA
predictors identified. Here, univariate P-values differ less from LOO
indices because the SNPs are largely uncorrelated.

We find similarities and differences between the van Heel et al.
(2007) results and our results. Almost all of the SNPs in Table 4
with univariate P-values below 10−4 are singled out by van Heel
et al. (2007). The one exception is SNP rs1499447 on chromosome
8, which they dismiss because of irregularities in genotyping. We
find different SNPs in the KIAA1109-TENR-IL2-IL21 block on
chromosome 4. This is the region that replicates well in their

Table 3. Results for 50 random replicates using the coeliac genotypes

(s1,s2) λ1 Ktrue,1 λ2 Ktrue,2 Time

Additive model
(10,10) 48.78 4.00 52.19 4.46 45.33

(1.57) (0.00) (4.11) (0.50) (13.48)
(10,20) 48.78 4.00 18.24 5.70 66.36

(1.57) (0.00) (4.05) (0.61) (12.82)
(20,10) 45.10 4.00 53.93 4.44 74.22

(1.24) (0.00) (4.00) (0.50) (29.64)
(20,20) 45.10 4.00 45.11 4.54 137.16

(1.24) (0.00) (1.63) (0.50) (51.70)

Dominant model
(10,20) 85.18 3.96 26.68 5.70 182.98

(4.57) (0.20) (5.69) (0.54) (20.62)

Recessive model
(10,20) 62.53 3.00 20.76 3.14 83.76

(3.93) (0.00) (8.32) (0.35) (66.12)
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Table 4. The non-HLA predictors found under model 3 with 50 mandated
predictors

Position Univariate LOO
SNP Chr in BP P-value index Estimate

gender 2.77489e-25 9.20120e-18 0.61074
rs1888176 1 63298344 0.001561 0.000234 0.36746
rs13397583 2 23459535 1.60268e-05 0.001518 0.32605
rs6735141 2 142468480 0.000684 2.84818e-05 0.44583
rs1836577 3 5776886 0.000955 0.000119 −0.38543
rs6762743 3 180494694 8.41159e-07 3.04012e-06 0.50470
rs1559810 3 189607048 6.24178e-05 0.000587 −0.36208
rs991316 4 100541468 0.000286 5.86295e-05 0.38997
rs12642902 4 123727951 4.07547e-05 2.46611e-06 0.48330
rs153462 5 150585263 0.001544 8.49478e-05 0.42474
rs13357969 5 150731750 8.89698e-05 0.000153 0.38409
rs916786 7 109841758 0.000804 0.000174 0.37033
rs736191 8 99264380 0.000261 0.000493 0.35143
rs10505604 8 134096770 4.38312e-06 3.47134e-05 −0.46746
rs1499447 8 138051471 3.90991e-11 6.99196e-05 0.42571
rs1901633 10 4800561 0.000474 0.007989 0.28059
rs1064891 10 6316580 3.41871e-06 0.089192 −0.35675
rs1539234 10 6316749 5.33772e-06 0.843098 0.03108
rs10501723 11 89922680 8.56749e-05 0.004005 0.28470
rs7320671 13 19407203 0.001174 1.64655e-05 −0.43494
rs2879414 18 47962958 0.000272 2.78969e-05 −0.41487
rs10503018 18 53326747 0.000247 0.000925 −0.36819
rs2836985 21 39623039 0.000149 0.014373 0.24478
rs6517581 21 40276738 0.001141 0.000959 0.33649
rs5764419 22 42291261 0.000411 0.003744 0.28829
rs2283693 X 9625063 0.000248 0.000731 0.28610
rs5934725 X 9885994 0.000757 0.010604 −0.22593
rs4335267 X 44940333 0.000848 0.012583 0.21747

Dutch and Irish samples. Our failure to identify the same SNPs
in the KIAA1109-TENR-IL2-IL21 block is hardly a disaster; the
region and ultimately the underlying gene are more important than
the individual SNPs. It is noteworthy that among the 1000 most
significant SNPs listed by van Heel et al. (2007), 979 are in the HLA
region. Since SNPs in the HLA region on chromosome 6 are highly
correlated with coeliac disease, model 4 with 10 mandated predictors
removes the HLA SNPs, with the aim of finding associated SNPs
outside the HLA region. Table 4 in our submitted Supplementary
Materials now picks up SNPs on chromosomes 9, 11, 14 and 18 that
do not appear in Table 4. Removing all chromosome 6 SNPs rather
than just HLA SNPs leads to virtually the same results as displayed
in Supplementary Table 4.

To test for interactions, we take the s1 =50 predictors selected
in model 3 and examine all marginal and two-way effects. The
total number of predictors is 50+(50

2
)=1275, and we keep s2 =50

predictors in the model. Most of the 50 selected predictors have
LOO indices close to one. Table 5 lists the marginal and interaction
predictors with LOO indices less than 0.01. Several of these
interactions are interesting. Given the predominance of female
patients, the interaction between gender and one of the HLA SNPs
is credible. The interactions between two HLA SNPs and SNPs
on chromosomes 2, 3 and 8 are more surprising. It is particularly
noteworthy that the univariate P-values for these three SNPs as
marginal effects (Table 4) are far less impressive than their univariate
P-values as interaction effects (Table 5).

5 DISCUSSION
Our analysis of simulated data demonstrates that lasso penalized
regression is easily capable of identifying pertinent predictors
in grossly underdetermined problems. Computational speed is

Table 5. Strongest predictors under model 5 with all main effects and two-way interactions included

SNP Chr Position in BP Univariate P-value LOO index Estimate

gender 2.77489e-25 0.00952 0.39359
rs1888176 1 63298344 0.001561 0.001464 0.33090
rs1836577 3 5776886 0.000955 8.69904e-05 −0.38923
rs1559810 3 189607048 6.24178e-05 9.71542e-05 −0.40263
rs991316 4 100541468 0.000286 0.000514 0.34159
rs13357969 5 150731750 8.89698e-05 4.56935e-05 0.43473
rs2187668 6 32713862 9.48302e-191 1.65234e-09 −1.30307
rs916786 7 109841758 0.000804 3.13293e-05 0.41684
rs736191 8 99264380 0.000261 0.001485 0.33010
rs10505604 8 134096770 4.38312e-06 0.001069 −0.38067
rs10501723 11 89922680 8.56749e-05 0.005633 0.28523
rs2879414 18 47962958 0.000272 0.000125 −0.38128
rs10503018 18 53326747 0.000247 6.38471e-05 −0.41328
rs5934725 23 9885994 0.000757 0.004094 −0.24651
gender, rs2856997 6 1.45631e-19 0.00088 0.41372
gender, rs736191 8 1.42328e-06 0.008821 0.26378
rs6735141, rs9357152 2,6 2.29578e-22 0.000538 0.43816
rs6762743, rs9357152 3,6 1.11685e-26 9.16095e-06 0.55819
rs3129763, rs2187668 6,6 3.8393e-71 1.90299e-14 −1.31326
rs2294478, rs1499447 6,8 3.89141e-27 0.008368 0.38291

Here, we take s1 =50 and s2 =50 and list an effect when its LOO index falls below 0.01.
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impressive. If predictors are uncorrelated, then interaction effects
can be found readily as well. As one might expect, correlations
among important predictors degrade computational speed and the
recognition of interactions. For very large datasets involving more
than, say, 109 total SNP genotypes, data compression is mandatory.
Repeated decompression of chunks of the data then slows
computation. Our computational swindle circumvents this problem
because all of the working predictors easily fit within memory.

The coeliac dataset of van Heel et al. (2007) is challenging
for two reasons. First, the overwhelming HLA signal masks
the weaker signals coming from other chromosome regions.
Second, the HLA SNPs are in strong linkage disequilibrium and
hence highly correlated. Linkage disequilibrium manifests itself
as increased LOO indices and significant two-way interactions.
Despite these handicaps, lasso penalized regression identifies several
promising non-HLA regions and interaction effects. Our results for
chromosome 4 differ slightly from those of van Heel et al. (2007)
because we impute missing genotypes differently. Ayers and Lange
(2008) introduce a new penalized method of haplotype frequency
estimation that enforces parsimony and achieves both speed and
accuracy. When phase can be deduced from relatives, this extra
information can be included in estimation. Finally, it is noteworthy
that van Heel et al. have validated the chromosome 4 association on
two further datasets.

One can quibble with our method of picking candidate predictors
for interaction modeling. An obvious alternative would be to look
for two-way interactions between the top s predictors and all
other predictors. This tactic requires little change in our numerical
methods.

Readers may want to compare our approach with the approach of
Shi et al. (2006, 2007, 2008). One major difference is our application
of cyclic coordinate ascent. A second major difference is that we
always select a fixed number of predictors. These choices allow us to
quickly process a very large numbers of SNPs or interactions among
SNPs. The path following algorithm of Park and Hastie (2008) has
the advantage of revealing the exact sequence in which predictors
enter the model. Path following is more computationally demanding
than simply finding the best r predictors, but note that their software
[glmpath in R, Park and Hastie (2007)] can quickly post-process the
best r predictors discovered.

We have featured univariate P-values and LOO indices in this
article, but neither measure is ideal. Although FDR analysis is
valuable, no one has said the last word on multiple testing (Balding,
2006; Kimmel and Shamir, 2006). For instance, some form of
generalized cross-validation may ultimately prove useful. As a
matter of principle, most geneticists would not accept a single study
as definitive. All important findings are subject to replication. This
attitude, whether justified or not, puts the onus on finding the most
important SNPs rather than on declaring their global significance.
Our approach to data analysis is motivated by this consideration. The
software discussed here will be made available in the next release
of Mendel.
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